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Abstract. When an oil droplet is placed on a quiescent oil bath, it eventually
collapses into the bath due to gravity. The resulting coalescence may be
eliminated when the bath is vertically vibrated. The droplet bounces periodically
on the bath, and the air layer between the droplet and the bath is replenished
at each bounce. This sustained bouncing motion is achieved when the forcing
acceleration is higher than a threshold value. When the droplet has a sufficiently
low viscosity, it significantly deforms: spherical harmonic Y m

` modes are excited,
resulting in resonant effects on the threshold acceleration curve. Indeed, a lower
acceleration is needed when ` modes with m = 0 are excited. Modes m 6= 0 are
found to decrease the bouncing ability of the droplet. A break of degeneracy is
observed for the m parameter. In particular, when the mode ` = 2 and m = 1 is
excited, the droplet rolls on the vibrated surface without touching it, leading to a
new self-propulsion mode.
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Bouncing droplets on a vibrated bath were first studied by Couder et al [1]. With a radius
R < 0.5 mm, they may generate local waves on a 50 cSt bath and use them to move horizontally
and interact with their surroundings: they detect submarine obstacles that locally change the
oil depth, they orbit together or form lattices, they are diffracted when they pass through a
slit [2]–[6].

In contrast with these previous studies, we choose a bath viscosity of 1000 cSt, a droplet
viscosity between 1.5 and 100 cSt and a droplet radius R between 0.76 and 0.93 mm. With
a bath viscosity at least 10 times larger than the droplet viscosity, the bath deformations are
inhibited (capillary waves are fully damped), while the harmonic deformations of the droplet
are enhanced. As shown recently in [7], the droplet deformation ensures its bouncing ability.
Various modes of deformation may be excited as depicted in figure 1. Each picture has been
constructed from an experimental snapshot of the droplet (the left side of each picture) and the
calculated 3D spherical harmonic (the right side). Those modes are analogous to the natural
modes of deformation introduced by Rayleigh [8] and may be expressed in terms of spherical
harmonics Y m

` . The simplest mode that may be used for bouncing is the mode Y 0
2 [7]. We will

show that droplets can use non-axisymetric mode Y 1
2 to move horizontally, or more precisely

to roll over the bath. This new mode of self-propulsion drastically contrasts with the bouncing
walker mode described in [3] since bath deformations are not necessary for the propulsion.

1. Determination of the acceleration threshold for bouncing

On a bath vertically vibrated according to a sinusoidal motion A sin(2πf t), periodic bouncing
only occurs when the reduced maximal vertical acceleration of the bath 0 = 4π2A f 2/g is higher
than a threshold value 0th, where g is the acceleration of gravity. Formally, 0th depends on the
forcing frequency f [7], the droplet radius R [9], and the physical parameters of the liquids
(density ρ, viscosity ν, surface tension σ ). It has been shown in [7] that 0th does not depend
on the air parameters. We measure the threshold 0th as a function of the forcing frequency for
various droplet sizes and viscosities. For each frequency, we place a droplet on the bath in a
bouncing configuration, i.e. 0 > 0th. The forcing acceleration is then decreased progressively.
When the threshold is reached, the droplet cannot sustain periodic bouncing anymore and
quickly coalesces with the bath. Since the droplet and the bath are made from different liquids,
a coalescence event locally contaminates the bath. Therefore, droplets always need to be placed
at different locations on the bath.

In figure 2, the threshold acceleration 0th is represented as a function of f, for droplets
with viscosities ν = 1.5, 10 and 100 cSt. The threshold acceleration for the 100 cSt droplet
monotonically increases with the frequency. By opposition, the 1.5 cSt curve is characterized by
regularly spaced local minima that correspond to a resonance of the system: a minimal energy
supply is required to sustain the periodic bouncing motion. The first minimum, at f = 50 Hz,
corresponds to 0th = 0.25, a value significantly less than the 1 g minimal threshold required by
inelastic bouncing objects on a vibrated plate. Modes m = 0 and ` = 2, 3 and 4 are observed
for forcing frequencies corresponding to minima in the threshold acceleration curve. The higher
the frequency, the higher order the excited mode, and the higher the corresponding threshold
acceleration. We note that the asymmetric mode Y 1

2 occurs at a local maximum of the threshold
curve.

The bouncing droplet may be considered as an oscillating system analogous to the damped
driven harmonic oscillator: surface tension is the restoring force and viscosity the damping
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Figure 1. Various deformation modes of a bouncing droplet (ν = 1.5 cSt, R =

0.765 mm) observed with a high-speed camera. The first line (respectively 2nd
and 3rd) displays a mode Y 0

2 (respectively, Y 0
3 and Y 0

4 ) (axisymmetry). The
forcing frequency f and reduced acceleration 0 corresponding to these modes
are indicated in the figure. These sets of frequencies and reduced acceleration
correspond to the first three minima in the curve 0th( f ) represented for ν =

1.5 cSt. The two columns represent snapshots taken at two different phases of
the oscillation. The spherical harmonic solution (in colour on the right of each
picture) is superposed on the experimental pictures (in grey on the left of each
picture). Movie 1: available from stacks.iop.org/NJP/10/113021/mmedia. The
movie compares the bouncing droplet in the modes Y 0

2 , Y 0
3 , and Y 0

4 with the
spherical harmonic function obtained using MATLABTM.

process. The dimensionless ratio between the two is the Ohnesorge number Oh = ν
√

ρ/
√

σ R,
which is equal to 0.012, 0.078 and 0.775 for a droplet viscosity of 1.5, 10 and 100 cSt,
respectively. When Oh � 1, the viscous damping is negligible and resonance is acute. Damping
increases as Oh gets closer to 1. As seen in figure 2, the bouncing droplet reacts to an
increased damping in the same way as a harmonic oscillator: (i) the resonance frequency
slightly decreases, shifting the whole threshold curve to the left, (ii) the required input 0th

increases and (iii) extrema tend to disappear. At 100 cSt (Oh = 0.775), the damping is fully
active and the threshold curve increases monotonically with the frequency: no more resonance
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Figure 2. Evolution of the bouncing threshold acceleration 0th with respect to the
forcing frequency. The red bullets, green squares and blue triangles correspond to
droplets with viscosity ν = 1.5, 10 and 100 cSt, respectively, and with a constant
radius R = 0.765 mm. Depending on the forcing frequency, various modes are
observed, that may be related to spherical harmonics Y m

` .

is observed. This high-viscosity behaviour has already been observed by Couder et al [1] for
500 cSt droplets bouncing on a 500 cSt bath. Those authors proposed to model the threshold
curve by 0th = 1 + α f 2, where α depends on the droplet size among other things. This equation
is obtained by considering only the motion of the mass centre of the droplet and the squeezing
of the air film between the droplet and the bath, without considering the droplet deformation.
This model is valid for high viscosity regimes in contrast with the model developed in [7], where
droplet deformations are taken into account in the lubrication force. According to this model,
minima in 0th curves correspond to a resonance phenomenon of the droplet–air film system, as
described in the introduction.

2. Resonant states

In 1879, Lord Rayleigh [8] described natural oscillations of an inviscid droplet. Since those
oscillations are due to surface tension, natural frequencies scale as the capillary frequency
fc =

√
σ/M , where M = (4π/3)ρR3 is the droplet mass. More exactly, the dispersion relation

prescribes the natural ‘Rayleigh’ frequency fR related to an ` mode:(
fR(`)

fc

)2

= F(`) =
1

3π
`(` − 1)(` + 2). (1)

The function F(`) may vary (frequencies are shifted by a multiplicative factor), depending
on the way the droplet is excited [10, 11]. For free oscillations, equation (1) is degenerated
according to the m parameter. In figure 3, threshold data obtained for various droplet sizes
collapse on a single curve by using the Rayleigh scaling. Moreover, at the bouncing threshold,
the vertical force resulting from the droplet deformation exactly balances the gravity. One
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Figure 3. Dimensionless amplitude Ath f 2
c /g as a function of the reduced

forcing frequency f/ fc, where Ath is the amplitude of the bath vertical motion
corresponding to the reduced acceleration 0th and fc =

√
σ/M the capillary

frequency of a droplet of mass M = (4π/3)ρR3. Red bullets, green squares
and blue triangles correspond to droplet radius R = 0.765, 0.812 and 0.931 mm,
respectively. The droplet viscosity is ν = 1.5 cSt. Modes ` = 2, ` = 3 and ` = 4
are observed in the black, yellow and red ranges of frequency. Boundaries
between those zones correspond to maxima in the threshold curve. Moreover,
those particular frequencies may be obtained by multiplying the Rayleigh natural
frequencies (equation 1) by a factor of 1.15. Arrows indicate the Rayleigh
frequencies, which cannot be directly related to inflections in the threshold curve.

may define a characteristic length L = g/ f 2
c corresponding to the free fall distance during the

capillary time 1/ fc. As shown in figure 3, the threshold amplitude Ath = 0thg/(4π2f 2) scales
as the length L, whatever the droplet size is. The minimum value of Ath f 2

c /g does not vary
significantly with the mode index `. In figure 3, the natural frequencies defined in equation (1)
and represented by arrows do not correspond either to the minima in threshold, or to the maxima.
However, these frequencies multiplied by 1.15 give the maxima positions, at f/ fc = 1.05, 2.05
and 3.15 for ` = 2, 3 and 4, respectively. This numerical factor depends on the geometry of
the excitation mode (bouncing in this case): e.g. another (smaller) factor is obtained when the
droplet is stuck on a vibrated solid surface [10, 11].

As shown in [7], the bouncing ability of droplets is due to the cooperation of (i) the droplet
deformation that stores potential energy, and (ii) the vertical force resulting from the squeezing
of the intervening air layer between the droplet and the bath. The forced motion of the bath
provides some energy to the droplet, a part of which helps the droplet to bounce (translational
energy) while the other part increases internal motions inside the droplet, which are eventually
dissipated by viscosity. The proportion of energy supplied to the translational/internal motion
varies with the forcing frequency (i.e. when the energy is provided in the oscillation cycle).
Minima (respectively maxima) in the threshold curve correspond to a maximum (respectively
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Figure 4. Rolling motion of the droplet (top): mode Y 1
2 of a bouncing

droplet (ν = 1.5 cSt, R = 0.765 mm) observed at f = 115 Hz and 0 = 4.5> 0th.
Frames are separated by 1 ms. The droplet is rolling towards the left. Bottom:
the rolling motion is revealed by small bright particles spread inside the droplet.
Movie 2 compares the droplet in the mode Y 1

2 and the mathematical function
from MATLABTM. Movie 3 shows the motion of the particles inside the droplet
when it rolls over the surface of the bath. Both movies are available from
stacks.iop.org/NJP/10/113021/mmedia.

minimum) of the translational to internal energy ratio. Maxima may be related to the cut-off
frequency recently observed and theoretically explained by Gilet et al [7]. This fact is confirmed
experimentally, since the maxima in threshold correspond to the boundaries between modes. At
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Figure 5. Initial speed of the roller for various frequencies (indicated in the
legend) as a function of the characteristic speed v∗. The droplet radius is
0.765 mm while the viscosity is 1.5 cSt.

those points, corresponding to a forcing frequency of 1.15 fR, most energy is spent in internal
motions: the droplet resonates and absorbs energy.

3. Roller drop

The droplet behaviour has been observed in the vicinity of the first maximum in the threshold
curve. At 115 Hz, the droplet moves along a linear trajectory analogously to the walkers
observed in [2]. In this latter case, 50 cSt droplets were produced on a 50 cSt silicon oil bath. The
mechanism for the walking motion is the interaction between the droplet and the bath surface
wave generated by the bouncing. Such a mechanism does not hold in the case of a 1000 cSt
silicon oil bath. Indeed, the generated waves are rapidly damped and cannot be responsible for
the motion of the droplet. A movie of the moving droplet has been recorded using a high speed
camera (figure 4). The images are separated by 1 ms. The deformation is not axi-symmetrical
as in the resonant minima of the threshold acceleration curve. On the other hand, the mode is
related to ` = 2 and m = 1. This mode is characterized by two lines of nodes that are orthogonal.
This results in the existence of two fixed points located on the equator of the droplet. As the lines
of nodes do not follow the axi-symmetrical geometry, those lines move. More precisely, they
turn giving the droplet a straight direction motion. This is a way to observe the Y 1

2 mode of
deformation, which is generally degenerated with the Y 0

2 mode since equation (1) depends only
on `. The first maximum corresponds to the resonance of the Y m

2 mode. Due to the air film
dynamics, a droplet in the Y 0

2 mode cannot bounce [7], while a droplet in the Y 1
2 mode bounces

and rolls. As far as Rayleigh frequencies are concerned, we observe a break of degeneracy for
the m parameter!
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Some tracers have been placed in the droplet. The reflection of the light on the particles
allows the inner fluid motion to be followed, which clearly reveals that the droplet rolls over
the bath surface. The initial speed v of the droplet has been measured with respect to the
forcing parameters (amplitude and frequency). A scaling is found when considering that the
phenomenon can occur only above a cut-off frequency f0 ≈ 103 Hz and the amplitude threshold
Ath( f ) = 0th( f )g/(4π 2 f 2) as

v = 2πα(A − Ath( f ))( f − f0), (2)

where α is a constant. The initial speed is represented versus the characteristic speed v∗
=

(A − Ath( f ))( f − f0) in figure 5. The proportionality between the initial speed of the roller
and v∗ is remarkable. Three characteristic frequencies are involved in the rolling process: (i)
the excitation time 100 Hz, (ii) the rotation of the liquid inside the droplet about 10 Hz and
(iii) the translational motion about 0.2 Hz (the droplet travels a distance corresponding to its
circumference once every 5 s). The three processes are interrelated, i.e. the deformation induces
the internal motion which induces the rolling and the translational motion.

4. Summary

The deformation of low viscosity bouncing droplets is emphasized on a high viscosity bath: the
droplet oscillations are much less damped than the bath oscillations. Depending on the forcing
frequency, droplets need a different amount of supplied energy to achieve a sustained periodic
bouncing. When the forcing frequency corresponds to a multiple of the eigenfrequency of the
bouncing droplet ( f ∼ (` − 1) fc), the supplied energy is mainly lost into internal motions, so
the threshold acceleration 0th is at a maximum. On the other hand, 0th is at a minimum when
f/ fc = ` − 3/2.

A new self-propelled mode has been discovered for forcing frequencies between the ` = 2
and ` = 3 modes (between roughly 100 and 150 Hz) for a sufficiently low droplet viscosity. A
break of degeneracy is observed for the m parameter since the self-propelled mode corresponds
to a non-axi-symmetrical mode Y 1

2 . This mode is characterized by an internal rotation of the
fluid inside the droplet. The droplet rolls over the vibrated bath! This droplet displacement
technique is more adapted to large low-viscosity droplets; it is therefore of considerable interest
for microfluidic applications: manipulating aqueous mixtures without touching them.
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